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A method recently developed for determining the steady flow of a
nonviscous compressible fluid along a relative stream surface between ●

adjacent blades in a turbomachine was applied to investigate the sub-
sonic through flow in a single-stage axial-flow gas turbine. A free-
vortex type of vsriation in tsmgential velocity was pescribed along the
stream surface. Cylindrical bo~ding walls were syecified in order to
avoid radial flow at the walls. The flow variations on the stream sur-
face for incompressible and compressible flows were obtained by using
the relaxation method with hand computation and the matrix method on both
an IBM Card l?ro~smmed Electronic Calculator and a UNIVAC.

Considerable radial flow was obtained for both incompressible and
compressible flows because of the radial twist of the stresm surface
required by the prescribed velocity diagrsm and the compressibility6f
the gas; the radial twist of the stresm surface sudthe compressibility
of the gas had ecpally important effects, and the nonlinear nature of
the equations defining the flow.was quite evident. The shape of the
stresm surface,was found to be sensitive to the axial position of the

—

In all solutions considered in this investigation, convergence was
obtained without difficulty. A comparison betwe:n the relaxation and
the matrix methods showed that more accurate results were obtained with
the matrix method in a shorter inter’wilof time. The results of these
accurate calculations yrovide a basis for evaluation of simpler, more
approximate methods for computing subsonic through flow in turbines.

radial element of the stream surface in
ment of the stream surface in the rotor
the rotor, a large negative gradient of
all cases ahead of the rotor.
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the stator. When the radial ele- i
was nesr the midaxial position,in
axial velocity was observed in
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INTRODUCTION

In the design of gqs turbines having relatively long blades in the
radial direction, a first approximation of the r@ial variation o$tie..
state of the gas is commonly obtained by assuming the gas to be nonvis-
cous and to flow on cylindrical surfaces.. Axial symmetry is assumed in
such one-dimensional solutions for the radial variation in the gas state
upstream and downstrem of a blade row and they are usually referred to
as the “simple-radial-equilibrium~’or llsimplified-radial-eqtilibriuml’
solutions (see references 1 and 2 for examples). Even turbines designed
from a free-vortex velocity diagram, however, have considerable radial
displacement of gas particles across the blade row.@@ .to_thecompressi-
bility of the gas;.this displacement, of course, violates the assuqtion
of flow on cylintiical surfaces. The radial displacement of gas particles
across the blade row and the curvature in the streamline caused by the
radial.motion have a significant effect on the radial variation in the
gas state (see reference 2).

—..——- --

,.

Several through-flow mthods have been-developed to consider both”
.-

radial aud axial variations in flow conditions (see, for example, refer-
—

ences 2 and 3). In these methods an infinite number of blades and a
nonviscous fluid are assumed. The interpretation o~such a solution,
its modification for any finite number of thick blades, and it-sefien-
sion.to a complete three-dimensional solution for nonviscous fluids are
given in reference 4., In actual turbines, the motion of the gas is

—

further complicated by the secondary flow caused by the boundary layers
~~.

along the huh and casing walls (for example, referegce 5). Nevertheless;
it is believed that the detailed flow analysis based on an assumption of “-

a nonviscous gas will permit a clearer under~tsnding of the individual
<

contributions to the complete flow snd help to explain the development
of the viscous boundary-layer along the walls. --=

The theoretical method of reference 4 for obtaining a coqlete
three-dimensionalsolution is based on an appropriate combination of a
number of mathematically two-&bnension&l flowson twu kinds of relative
stream surface. The first kind of relative-stream surface extends from
the suction surPace of one blade to the pressure surface of the adjacent
blade and deviates, in general, from a surface of revolution about the
&is of the turboi.Uachinejin’reference 4 this surface is called S1. The

second kind of relative stream surface extends from.hti to casing and
roughly approximates the shape of the mean csa.iberqjmface of the blades;
in reference 4 this surface is called S2. The equations deftiix the

flow on these two kinds of stream surface are, however, similar and the
methods of successive approximation used in their solution are essen-
tially the same. The mechaiiicsof obtaining a numerical solution of
either of these two-dimensional problems by the methods of reference 4
has not previously been investigated. If convergence of one of these

4_
-.—-
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two-dimensional.solutions can be obtained without difficulty, the other

3 solution should then converge as well. The method of reference 4will
then very likelybe practical for analyzing three-dimensional flows of
compressible nonviscous fluids in turbomachines having finite numbers
of thick blades and arbitrary hti and casing shapes.

The primary objective of this investigation made at the NACA Lewis
laboratory is to study in detail the techniqpe of solving for the sub-

E
sonic flow along a relative stream surface of,the second kind (S2) by

N using the methods of references 4 and 6. At the same.time, of course,
the effects of compressibility and radial twist of the stre~ surface
are obtained; the examination of these effects therefore constitutes
the secondary purpooe of this investigation. If highly accurate solu-
tions can be obtained in this way, these solutions will provide a basis
for evaluation of other simpler but more approximate solutions for sub-
sonic through flow in turbines.

**’

For these calculations, a single-stage axial-flow turbine was
selected as the machine type to be analyzed. The amnulus walls were
chosen to be cylindrical and to have a hub-tip radius ratio of 0.6.
The radial distribution of the tangential component of velocity was of

the free-vortex type. The turbine-work parameter -zM/utz was 0.96

where -AH represents the stagnation-enthalpy drop ud Ut, the blade-

tip speed. The tangential component of velocity at the rotor exit was
assigned equal to zero. For a compressible fluid, the assigned condi-
tions resulted in an absolute Mach number of 0.99 at the root and’exit
of the stator and a relative Mach nuriierof about 0.70 at the root and
entrance of t’herotor. The effects of radial blade force were veried
by changing (1) the axial distribution of aerodynamic loading emd
(2) the axial location of the rsdial element of the strem surfaces in
the stator. I

The following three methods were employed in making the calcula-
tionsr

(1) Relaxation method with the use of a hand-operated desk calcu-
lator

(2) Matrix method

(3) Matrix method

.-.

..

-,

—

.r -

.-

—

-.

—._

on an IBM Card Programed Electronic Calculator

on a UNIVAC

The matrix factors-obtained in.th~ matrix solutions can be used for
similar calculations for compressors and turbines which have a constant
hub-tip radius ratio of 0.6.

.—.
____

-.



.

4 NACA TN 2750
.

SYMBOLS

The following synibolsare used in this report.
cate vectors on the stream surface; nonbold symbols
nents of these vectors.)

a velocity of sound

B variable definedby equation (2c)’

.

(Bold symbols indl- ~
indicate the compo- .

N

IuBi
0

differentiation coefficients in equation (26) used to
+
N

4j
multiply functiorivalue at grid point j to give mth ....~
derivative at grid point i-using polynomial of
fourth &egree

..—
. ..=.--~=

[c~,[E],[F], ‘

[G~,k],[u]
square matrices .- .- .-

differentiation with respect _L_otime following motion Of..._= .__:..+~
gas psrticle -m

. -..-

F vector-having dimensions of force per unit mass o~-gas~
defined by equation (6)

——

“

H total, or stagnation, enthalpy per unit mass of gas, .-:

h+v$ H*.< ~-Ei

h enthalpy per unit mass of gas ,. —..:

i>i),k grid points . ——- .==5

M Mach.number —. .-....——

N nonhomogeneous term of principal equ”tion as given in
equation (5)

‘:._-.’<._=

n unit vector normal to stresm surface ..=

1? static pressure of gas .- ..—....-. ... ,S

q any dependent-variable ...
.- ~$=

R gas constant ..
--i=

r radial distance, r*rt
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t

u

z

r

8r,5=

.

4*

tD

Subscripts:

e

‘h

i

o

r

T

entropy per unit mass of gas, s%

temperature of gas

the

velocity of blade at radius r

absolute gas velocity, V%t

relative gas velocity, #%t

axial distance, z*rt

column matrices
.

ratio of specific heats, 1.33

grid qacing in r- and z-directions, respectively;

~rt, ~rt

mass density, P*PT,i

general vsriables used in density table

~ position

stream function, @~,iUtrt2

-r Speed of blade

exit

hub

inlet

grid point

5 — .-.

—

●

——

.

refers
ment

radial

total,

to position where stream surface has a radial ele-
or where Fr = O

component

or stagnation, state .
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t tip -—.

u tangential, or circumferential, component

z axial component

Superscriptst

ijjjk grid points

* dimensionless value

EQUMZONS GOVERNING FLOW ON A RELATIVE STREAM SURFACE

BETWEEN TWO ADJACENT BLADES

The present report is concerned with the.inverse solution (desi&
problem) for the steady compressible flow on a rektive stresm surface
about midway between two adjacent blades (see fig. 1). The shape of
this stream surface is not known in advance but the variation in tangen-
tial Telocity of the gas and the position of the radial -element.ofthe
surface are prescribed in the design. The_sbape of the streem surface,
as well as the state of the gas flowing along the surface is described
by the two independent–variables r snd z.

In reference 4, the following continuity equation for steady flow
on the stream surface is obtained:

~(rBpWr) + ~(rBPWz) o .

ar 32 =
(1)

In equation (1) the’hold’psrtial derivative~ign denotes the rate of
change of the dependent variable on the streqm surface with respect to
the independent v~iableaud is related to the ordinary partiaLderiva-
tive with respect to the coordinates r, ~, and z as follows:

(2a)

(z-b)

The angular variation of the variable is thus implicitly included
althowh its value can be calculated onlv after the shame of the stream. *-_—
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surface is obtained in the solution. The variable B in equation (1)
1 is related to the agular variation of the gas velocities end the shape. ...: ---

of the stream surface by

pt

8
N This vsriable B can also

(2C)
...

—. .-
L--

be interpreted as a variable angd.ar thick- . ._
ness of a thin stream sheet whose mean surface is the stream surface .
shown on figure 1 (referc%ce 4). Because, B along the mean Stre= Sur- . _.:zD
face is very closely rela.tedto the ratio of circumferential channel
width to pitch (reference 7), it canbe approxhately estimated in,the

...

designby considering desirable axial and radial variations’in blade
thickuess required to provide, for exsmple, adequate strength and a
cooling passage of sufficient size; with these variations taken into
account, B can then be used in the design calculation of the meen

r

stream surface. For the lhd-ting case of an infinite n~ber of b~des ,---
of zero thicbess, B becomes a constant and is taken eqwl to 1.

Equation (1) is the necessery
stream function ~ exists with

and sufficient condition that a

~= -rBpWr

(3)
.-----___

(4) ““”

With the tangential velocity of the gas specif’iedjthe subsonic
flow of the gas is obtainedby the solution of ~ in”the following
principal equation, which is obtained from the eqwtion of motion in ,
the radial direction with the use of relations (3) end (4):

(5)

——
. —

—
L ,,.
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b equation (5), Fr is the radial component of a vector F, which is
.-

defined as follows:

(6)

For”the lhniting case of an infinite number”of blades, F becomes the
blade force. For the evaluation of Fr, which represents the influence

of the radial twist of the stream surface and of the circumferential
pressure gra~entron the gas flow, the other components of F are
first computedby the equation of motion in the tangential and axial
directi-ems:

(7)

The component Fr is then obtainedby the use of the following equa-

tion, which is derived from the integrability condition, which insures
that the stream surface to be obtained is a.continuous integral SW- ‘
face:

j’(,)
z

Fr = Fur
3 Fz dz

%=
‘o

(9)

—.

The radial derivative of entropy s @ eqvation (5) Is determined
from its radial distribution at the inlet and the following condition” “.
of the’CflnstanCyOf S along .astreamline on the stream surface for
reversible adiabatic flow:

D6=~
Dt

(lo)
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‘1 The radial derivative of H in equation (5) is determined from the
inlet variation and the following eqpation:

DH D(Vur)

E’” Dt
(u.)

N Equation (Q) is obtained (reference 4) by the use of the eqpation of
8’ motion on the stream surface and the following equation eqressing the

—

N“
orthogonal relation between the resultant relative velocity and the
surface normal n or its parallel vector F: -.

‘#’r +W#~+W#z’O (12) —...—.-

Because the three eqm.tions of motion have already been employed in the
solution, there is only one more independent relation in eqpations (11)
and (12). In the following, equation (IL) is used ad is considered to

.

represent the orthogonal relation (12).

The variation of density included in N in equation (5) .isdeter-
mined from the ~-derivatives by use of the”following relation between
density, enthalpy, and
the total condition at

entropy, between the local static condition and
the inlet:

&=.

.’

H (v@)2 (%Y+(92*:;,P‘--=—-— -
Hi 2Hir2 2~(r@)2 _ -- .:—.“

PRESCRIBED DESIGN CONDTI’IONS

In the present study of the through flow in a gas turbine, the
effects of some of the design variables are.considered. Cylin&ical
bounding wQls are specified in order to avoid radfal flow at the
walls. The meridional section of the turbine is shown in figure 2.
A hub-tip radius ratio of 0.6 snd a blade aspect ratio of 2.67 (which
is based on axial chord and corresponds to the blade-row aspect ratio
of 2 used in reference 2) are chosen in order to compare some of the
results with those previously obtained in~eference 2 by an approxi-
mate method. --- -

—
. .

.—. .—. —

—.
.. ..,..
,-
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Flow conditions were computed for six sets of assigned conditions.
These sets of conditions are designated case~ A, B, C, D, E, and F
and are summarized”in the following table:

Case

A
B
c

D
E
F

Fluid

Incompressible
Incompressible
Compressible

Compressible
Compressible
Compressible

‘ Loading
distri~
bution

UnifQrm
Nonuniform
Nonuniform

Nonuniform
Nonuniform
Nonuniform

A&al location , ..,.-
in stator of
radial element
of stream
surface

*
‘cl

0.0675
. .0625
(Fr neglected)

.0625
o
.1500

The prescribed variation of.tangential.velocity,or the angular
momentum per unit mass of gas V~r*, is such that at a constant-z plane,
V*r* on the stream surface is constant with.respect to r*; and at allu
fixed values of r*, the variation of V~r* on the stream surface with

* is as shown in figure 3.respect to z Two.Lkindsof variation with
respect to z* are considered. The dashed line shows a linesr varia-
tion, and the solid line shows a composite variation in which,a constant
rate is maintained for the first half of the blade chord and a rate
linearly decreasing to zero.is used for the second ha.M. These two var-
iations are called uniform and nonuniform loading, respectively. In
both cases the total change of Vur divided-by Utrt (or -@Ut2)

across the blade rQw is 0.96, which is used In reference 2. The expres-
sions for the dimensionless specific angular moment~ me as fo~ows: _.

(a) Uniform loading

Stator: o SZ*S 0.15,

a(V~r*)= o.96 “.

a=*
~ :- (14)

.

,.——-
,..,

,-

.-

r--.

—-----..-—

.-

— ——

--,..

0.96 *
V~r* = ~ z

.
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Rotor ~ o.20~ z*~o.35,

a(v~r*)= 0.96
~z* 0.15

(16)

V~r*=& (0.35’=-z*)’
.

(17)

(b) Nonuniform loading .._. .—

Stator: OS Z*50.075,

~(Fur*) 4 0.96.—
az * = 3 0.15 (18) ‘-- ‘=

4 0.96 *
V~r*=zmz

.
(19) ‘“”-’—

o.075~ z*~o.15,

a(v~r*)—’w+)az*
(20)

V#* = -
[ &-(&)j

0.32 + $X 0.96 2

(21)

0.20~ Z* ~0.275,
-T,

Rotor I

~(V~r*) = 4 0.96--—
az* 3 0.15

(22)

@ur* = 0.96 - $= (z* - 0.2)
.

(23)
—

0.275~ Z*5 0.35,
—..—,—

a(V~r*) (8 0.96 ~ Z*- 0.2=- ——
az* 3 0.15 - 0.15 )

(24)+.
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For a given axial.distribution of tangential velocity, a change in -.

the axial location of the radial element of?the stresm surface will
Q

alter the radial and axial distributions of both axial and radial velo-
--—

cities and thereby change the shape of the streem surface. In the
rotor, the axial locati~n of
surface is 45 percent of.the

(.$ = 0.2675) for case A and

D, E, and F.

the ~adial element of the relative stream
.-

axial blade chord from the lc$adingedge N“
o—

41.7 percent (z: = 0.2625) for cases B,
g

—.

With this prescribed axial variation in Vur, the radial deriva-

tive of Vur contained in the equations given in the precedirigsec-

tion drops out. Also, for the presentinvestigtition, the inlet flow
is considered to be uniform in entropy and total enthalpy. Then, for
adiabatic frictionless flow, the radial and axial.derivatives of s
vanish. The radial derivative of H also vanishes for the specified
inlet condition and Vur.

For the presentiinvestigation~B is.taken to be-a constant (a
value of 1 is used in the calculation). In a sense, the solutions
thus obtained do not depend on say particular blade configurations.
But the solution is correct only for those M.adings whose geometrical
configuration is such that the sngular ~hic@ess of the mean stream
sheet is essentially constant. It alsQ gives.the limiting solution -
for a infinite number of infinitely thin blades. To interpret the
results obtained as this limiting solutipn, the prescribed variation
of Vur corresponds exactly to the free-vortex type with a(Vur)/&

equal to zero. For the general interpretation of the results obtained
as the solution for the flow along a mean streem surface (subject to
the assumed constant value of--B). the prescribed condition that
~(Vur)/~r be eq@

used
The inlet flolr
in the present

-

.J-

., .

.— -—

-.

—
,,... ,.;lL

G ___

.,-

-..—.

-.

..=

.
to zero does”~ot gi~e ~~vur)/& eq=l to zero. —.

of the turbine example given in reference 2 is
investigationiand is as follows:

$ ‘i
.~ = 0.650. .-

..
. ..-

‘i
= 0.308

.—
.-

T- Y
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,

For this Mach number,

.

.

.

Pi
,P:= ~ = 0.95033

Hi
H; = ‘= X2.546~t2

METHODOF SOLUTION

The principal eqya.tionto be solved is eqy.a.ti,on(5). This partial
differential equation is first replacedby a number of finite-difference
equations representing the differential equation at a number of grid
points covering the domain. Because of”the nonlinemnature of the
problem, these equations’are solved by the general method of successive
approxhations. In each cycle of calculation, the nonhomogeneous
term N is evaluatedby employing any appropriate approximate solution
at the start and by using eqwtions (7) to (H) and eqpation (13)
together with the flow variation obtained in the preceding cycle; the
results are then taken as given values in the solution of ~ in the
fo~owing cycle. The solution of ~ from the finite-difference fofi
of the principal equation is obtained by the relaxation method (refer-
ence 8)”in the modified form as given in reference 6 and by the matrix
method discussed in “reference6. The accuracy of the solution depends
on the accuracy of the finite-difference representation of the partial
differential equtfon, the size ot the residual left in the solution
of ~, qd the number of cycles completed for convergence.

----
.-..
—.

...-—

—
.—

—. .-

. . ——_...

Choice of Grid System and Degree of Polynomial Representation .-

In these calculations, a single grid size was used for both the
relaxation and the matrix calculations. The results of reference 2
were useful in selection of the grid size. From the results obtained
in reference 2, the stream function ~ is expected to increase
smoothly with respect to radius at constant-z planes and to vary
approximately as a sine curve’with respect &O z at const@ r-values”..
With the necessity of covering a large domain in order to satisfy the
boundary conditions given f% upstresbiof the stator and far downstream
of the rotor, and with such a smooth variation of ~ over the domainy
the use of a fourth-degree polynomial representation rather than of the
usual second-degree one is suggested so that the number
may be reduced. From experience gained while obtaining
solutions, a final grid size of 0.05 rt in the radial

— .-

--
--

--

of grid poi.nts -----
rel~tion .-—-—---
direction and ;

I

*
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.

0.025 rt- in the”-&xialdirection in the meridional plane are used

(fig. 4). These grid points on the meridional plane are.for refer.ence,
——

or recording, purposes only. The variables involved in the solution
,

are those on the stream surface (fig. 4).

The use oflthis grid size gives seven radial and axial stations
on the.stresm surface between the hub and the casing and across each
blade row. With the present variation of ~ in the radial direction,
sufficiently accurate results sxe expected for radial derivatives. The
accuracy of the axial derivatives is analyzed for a simple sinusoidal
variation in the axial direction with a pe@od of 20 5Z, and the fourth-

degree polynomial representation is fowd to give first- and second- --
order derivatives accurate to within 0.02 p“ercent.

.— ,——
=
-.
-.

-$
...=.—

For simplicity (in order to give a uniform formula in the
z-direction), the same grid size in the z-direction is used for the
entire domain. It is-found in the relaxation solution that the radial
distribution of ,* had no axial variation in the first five signifi-
cant figures after.eight of these z-stations either upstream of the
stator or downstream of--therotur. The matrix factors for matrix solu-
tions therefore cover a range of....z* varyigg ~om -0.5 to 0.85, which
includes 10 stations each way upstresm of the stator and downstream of
the rotor. The order.of &trices is thus 7x55 = 385, which is also
the total number of Interior grid points.

-—

—

.—

At the first and the last z-stations and a few stations nearby, ●-
sufficiently accurate z-derivatives can be obtained by the use of a .

three-point differentiation foimnil.a.For simplicity in setting up the ‘- .=
—.—

matrix factorization, however, the ssme central-point fourth-degree .E

differentiation formulas me used for the entire domain. The use of —

these formulas means that the ssme botidsry--valuesof $ are used for
.

the two stations outside the first (z*= - 0.5) and the last (z* = 0.85) : ““n
z-stations.

—

Ftiite-Difference Form of Principal Eqyation -.

With the grid sizes of 0.05 and 0.025 Ehosen for b: and b~,

respectively, the differentiation coefficie-n-tafor the first- md the ‘ “’7“~”-~
second-order derivatives are computed. If.~hese coefficients at grid .,,--

point i are denoted by ~~ and fi~;
—

re%p-ectivelyJthe finite-” ‘ —..—

difference form of the principal.eqyation at &y grid point i become~ “ .=
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.

.

-—

(26)

where ~j and V’ denote the values of ~ on the stream surface
,:-Jd

corresponding to the grid points along constant-z and constant-r lines —
on the meridional plane, respectively (fig. 4).

Calculation of Boundary”Values of ~

The value of ~ along the huh is chosen to be zero. The value of
a dimensionless ~ along the casing is chosen as follows: At sta-
tion i-i, with the use of.equation (3),

rt2-rh2
BiPi Vz,i ~

%,i ‘t %’

For Bi equal to 1 and the chosen values

9: = 0.19767

—

—
-. ..

which is a constant along the intersecting curve of the stresm surface .—
and the casing. —

At the inlet station i-i, which is one bz~distance upstream of

the first station (z*=
. A.

-0.5), and the exit station e-e, which is one -.

bz-distsmce downstream of the last station (z* = 0.S5) (see fig. 2),
the radial distribution of W* is computed as follows:

r2-rh2
+; (r) = ~~ (r) = 0.19767

rt22‘rh
(27)
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!J!hissimple variation results from the fact that with no +zingentialand
radial velocities of the gas an’dwith uniform values in H and s, the
axial velocity and-density ue Qso -fo- at both these stations.
This radial variation in ~ is maintained constant from cycle to cycle
and the problem is therefore treated as a boundary-value problem of the
first kind.

If the nonhomogeneous term Ii is everywhere eqyal to zero, the
differential equation (5) would be satisfiedby the $-function as given
by eqpation (27),which means that the gas flows on cylindrical sur-
faces. The present Troblem is then essentially to determine the change
of v from this simple distribution due to a certain distribution ON
N in the domain resulting from the nonzero values of density deriva-
tives ~d Fr.

-- l!.

—

“: 3
–N
-——.-.

Calculation of Nonhomogeneous Term ..-

Calculation of densityby the use ofgeneral table. - The defini-
tion of N in the pri.ncip.al- eq=tion (5) shows N to consist ofi~
terms for the present investigation. One is connected with the com-
pressibility of the gas, and the other> ~th the tangential Press~e : ““-
gradient of the gas and the radial twist of the stresm surface. The
first term in N vanishes for incompressibleflow, and its evaluation

—.
..

for compressible Ylow is as follows: w—

In each cycle of computation st=t~,.~th a given variation of .-

~, its derivatives withrespect to r and z are first obtained by
“m

numerical differentiation. These derivatives are squared, added, and
used in the following formula to obtain a function @

--
-.

The last two”factors-in
obtained-from the given
value”of @ , a value of
ence 4 (with T = 413)>

the right side of the.preceding equation are
inlet condition and equation (l-l). From the -- ---

Z is read from table I(b) given in refer- ..-=
and p* is obtained by —

(29)
—

.

.
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After P* is evaluated, its derivatives are computed and combined
. with the ~-derivatives to form the first term in N.

.

Calculation of Fr by eqyation (9) and approximate formul.as.-

The second term in N involves the We of p and ~~/~r based on ‘
the new values of ~ in each cycle and the evaluation of Fr “in the

cycle. In order to evaluate Fr, equations (7) to (9) axe used. The —
computation of Fur by equation (7) is relatively sin@le (the second
term drops out for the present problem). For the coqutation of Fz

of equation (8),the last factor of the last term

is available in the solution by the relaxation method ’becauseit is
involved in the computation of the residual. In the matrix,solution,
however, this factor i~ not available. In such a case, the last term
is replacedby the following expression through the use of eqyation (l):

in which the value of Fr of the previous cycle is used. After Fz .-

is computed, it is divided by Fur and differentiated with respect to
Z. With Z. chosen between two grid points, the formula given in —

reference 9 is used for the integration to determine

The following approximate eqression for Fr is
equations (7) to (9) by assmning a~/ar constant and
terms:

J
z

2 ~(~ur)Fr=—— (Vur) dz “
=3 az

‘o

When equations (14) to (25) are substituted into
eqyation, the ‘follo~~-expressions for

.

dtiensionless

Fr.

obtained from ,........+
neglecting small —..—

-----.—

(30)
— —-—

the preceding
Fr are obtained: .

—
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(a) Uniform load.ing

Stator~
()
0.96 2 z*2-z:2

F#=~ —r*3 0.15 ~
(31)

.--......—

( )[2 0.96 2 *2-0.22F~==— —
~*3 0.15 10.35 (Z*-002)- + (32)Rotorz

#“-
(b) Nonuniform loading

Stator: o ~z*~o.075,

[ 1z*2-fioz
2 4 0.96 4 0.96

F:= —-— -—
r*3 3 0.15 3 0.15 2

(33)
.——--—

00075’5Z* 50.15,
.. ..—.=

.

0.32 (z*-O.075)+$~ (Z*2-0.0752)-.

..

11 Z*3-O.0753
5 0.15

(34)

Rotor : 0.2~z* ~(j.275,
-- —

F: . 2 40.96-—. —
,@ 30.15

[
0.96(z*-z$)-

—.

14 0 96 (z*-0,2)2-(z~-0,2)2..—
30.15. . 2

(35)
.._.._._

a

0.275 ~Z* ~0.35, ‘
.-

.
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.

.

*

.

4 ()-g,o.0752-@0.2)2
3m 2 +1,28 (2*-Z:) -

.—

[
$% (Z*-O.2)2- (0.075)2-

.

2*-,*2 1})3-0.0753
3X,.15 (36)

Solution of Principal Equation by Relaxation Method

Computation of the residual. - After the nonhomogeneous term I@
is obtained at each grid point} it is subtracted from the left side of
equation (26). The difference obtained is the residual at the grid
point i.

Reduction of residuals. - The coefficients used to relax residuals A
(relaxation pattern) areobtained according tothe five-point first-
~d second-order differentiation coefficients in the left side of eqpa-
tion (26). These coefficients for a 0.00001 change in the ~-value at
the grid point are given in table I. These ad similar coefficients
for o$her values of change in ~ listed on cards were found to be con-
venient in ccilculation. As a combination of checking and ttie saving,
it is found convenient to relax a given set of residwls by using only
the central.three or five major coefficients at first and, when the
residual is smaX1.enough, to compute for the total changes in ~ made
at each grid point the correct resultant residual everywhere, ~d then
to relax the residuals further with all coefficients. The technique of
overrelaxing or underrel.axingand line-reking is very helpful. In
most cases, the relaxation of 385 points (most relaxation is done in
the blade region) is completed within 1.6hours by hand computation.
The greater portion of work for the present problem is obtaining the
residuals, which takes about Q and 60 hours, by hand computation, for
the incompressible and the compressible solutions, respectively. In -
some of the later relaxation solutions obtained herein, this work of
computation of residual is done on the IBM 604 Calculating Punch
and an 16M Card Programed Electronic Calculator (hereinafter called
CPEC), except the commutation of Fr, which is more difficult to set

w“ In this way, the calculation of residuals for the compressible
flow problem takes about 8 hours of machine time and a few hours of
hand computation for Fr.

.

-.

,.*

, -.

-. --
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Solution of Principal Equation by Matrix Method —

The 385 simultaneous a~ebraic eqw.tions (26) for the 385 interior
grid points can be written in a compact matrix form by denoting the com-
bined coefficients of Vj’s and vk’s in equation (26) at the point i

by Cl and denoting the sum of I@ and the product of the known boun-

dary ‘~-values snd their corresponding coefficientsby aif

c;@ i or [q {*}= ~}=a (37)

The matrix [c] is shown in figure s in terms of submatrices [E], ~F]j

and [G~. Because there are seven interior grid points in the radial

direction, these mihnatrices are of the order seven~ and because of
thecylindrical walls and the use of uniform spacing and the same dif-
ferentiation formula, they repeat regularly along the diagonal of [c]●

All the other suhmatrices are zero. The elements of [~,~~,[G] are

given in figure 6 in terms of the grid spacings %* and 5%. In [F~

and CG] there are nonzero.elements only on the diagonal. With the

use of %* and a: equal to 0.05 and 0.025, respectively, in order to

get the elements of the matrices in short round nurbers, the following
multiplications are made:

Row of [C] value Multi@i -
of r* cation

1, 8, 15, ... 379
2, 9, 16, ... 380
3, 10, 17, ... 381
4, 11, 18, ... 382
5, 12, 19, ... 383
6, 13, 20, ... 384
7, 14, 21, ... 385

.

. .- .-,<

I I factor

L .:-.
0.95 0.57
.90 .54
.85 .51
.80 .48 ,
.75 .45
.70 .42
.65 ,39

.-

The resultant submatrices are shown in figure 7. The same row multi-

.-

,-.. -----

—.—- - -—

.-T

pliers are also applied to the elements of {a} before solving for {$}.
LJ b

In the solution of eq~”tion (37), because of the aforementioned

special nature of [Co,it is best to factor [C] into two triangular

matrices which also have not more than 1S nonkero elements in a row
running alongside the diagohal (references 6, and 10.to 13). Thus

,

=
.—,.

..-

.
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[C] = CL] hd (38a)

.

.

.

.

where [u] ~has elements which are unity along the diagonal, and equa-
tion (37) becomes

[L] [u] {~} = @} (38b)
-.

The solution of {~} is then o%tained by forwsrd and backward stisti-
tution processes as follows: Let

{B} = [u]{v}
-.

(39) - ‘

Then

[L] {~} = {a} (40)

Solve {~} from equation (40) qnd then {~} from .eqyation(39).

This matrix solution for the present investigation was made on an
IBM CYEC and on a UNIVAC. Nine digits sre used on the CPE(!and eleven
digits on the UNIVAC. At no place in the domain do the results
obtained for {~~ differ by more than 5 in the sixth digit.

After the solution of {~] is obtained in each cycle, it is sub-
stituted into equation (37) for an over-all check. The residual found
at any interior grid point is less than 1 in the eighth digit. Thus,
the residual at every interior grid point as found in each cycle of
calculation is reduced to practically zero with reference to the accu-
racy of the grid size chosen. A comparison between the relaxation and
the matrix m%hods showed that more accurate results were obtained
with the matrix method in a smalLer amount of total man- and machine-
hours.

RESULTS AND DISCUSSION

Inco~ressible Solutions

For adiabatic flow of a nonviscous gas with uniform s and H at
the inlet, the deviation of gas flow from that on cylindrical surfaces “
in the incompressible case is due entirely to the term containing Fr

in equation (5). In order to study this effect, solutions,are obtained
for the two types of loading as given by equations (14) to (21). The
one with uniform loading is designated case A, and the one with non-
uniform loading, case B.

.-

-. -..=
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Convergence of solution. - Similar approaches are used in obtaining
the solution for both cases. The calculation for case A is started with
an assumption ofistraight cylindrical flow and successively corrected
umtil the solution converges. The calculation for case B is started
from an approximate solution of case A. The initial calculations in
both cases are made by the relaxation method with # = O.land

6: = 0.025. The values %*= 0.05 and 6~ = 0.025 are used in later

calculations. In each cycle, the ~-values are diffic~t to improve
beyond the fifth decimal place.

.—

The final relaxation solution is further improved by the matrix
method. The $-values obtained in each matrix solution are resubstituted
into eqpation (26) and the residuals calculated at any point sre found to
be less than 1 in..theeighth decimal @ace. In the fourth matrix solution
all values are sufficiently converged for the grid size and diff’erentla-
tion forniulachosen. As am indication.of convergence of the solution,
the successive values oP--* at the mean radius # = 0.8 in the matrix
solutions of case B sre shown in table II. The change in ** in the
last cycle is less than 3 in the fifth significant figure or less thqn
0.003 percent. The vgd.ations of **, a’~*/ar*,a~*/~z*, F**, #z, F~,

and N* at two points Z* = 0.10 and 0.25 at the same radius
-.

obtained in the matrix solutions ae well.as t>Last three relaxation
solutions are shown in table III. All results given in the following
paragraphs are based on the last matrix solution and are the values on
the mean stream surface as indicated in figure 4.

.

,-
,-

—

-.-—

r .- .-

:

——-

.-

.—
.—

Variation of F components snd shape of streamline. - The calcula-
tion is first started by using Fr dekrminedby the approximate for-- ..x-.-
mula (30). It was later refined by using equations (7) to (9). The
variations of #ur* and F! with z* at several~adii-ae sho~ in

—

J .. . . —

—-

figures 8(a) and 8(b), respectively. The variation

similar to that of a(v~r*)/az*shown in figure 3,

only by the variation in V:.

The final values of @r at the ssmradii are

of F~r* is very

being modified .Z

shown in fig- .-
.-

ure 8(c). The starting values determined b~the approximate for-
mulas (31) to (36) are also shown in the same figure and are seen “to
give reasonably good approximate values. The magnitude ofiFr is seen

to be of the order of a quarter of Fu (figs. 8(a) and8(c)). This

large value of Fr” is due to a combination of the large deflection of

the gas in passing the turbine blading agd the large r~isl twist of the
stresm surface of this type of velocity diagrsm ~d influences the flow ‘
distributions Significantly.

—

.—
=

.-
. . ...=

—

.

b
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Because of this Fr-distribution, the nonhomogeneous term

equation (5) or (26) is positive upstream of the radial elanent
stator and downstream of the radial element in the rotor and is

23

N in

in the
negative

between them. The term N also increases in magnitude toward the hub. “
This distribution of N requires a general increase in ~ at any point
inside the blade row from its inlet value at the same radius ad results
in a streamline shape as shown in figure 9. In both cases A and B, the
gas flows radially inward in the stator and outward in the rotor. The
difference between the two cases is rather small.

—.

Variation of radial and axial velocities. - The variation of radial
velocity with respect to z at several radii is shown in figure 10(a).
In both cases A andB, this velocity has a minhnnn and a maximum about
in the middle of the stator and the rotor, respectively. It is practi-
cally zero about 1 axial chordupstream ~d downstream. The radial loca-
tion of the largest radial velocity occurs around r* = 0.75.

The variation of axial velocity at five radii is shown in fig-
ure 10(b). Itsdeviation from the inlet value is rather large along
the casing and the hub, especially in the space between the two blade
rows. *

Condition in plane normal to turbine axis and between stator and
rotor. - In a plane normal to the turbiqe axis and between the stator -.
and the rotor, the axial velocity is seen to decrease with = increase

—

in the radius (fig. 10(b)). For radially uniform H and s, the equa- .—

tion of motion in the radial direction is

wr avz

&_-E=Fr

Because Fr is zero in the space between the stator and the rotor
(fig. 8(c)), the radial velocit’ymust decrease with an increase in z
in order to satisfy this equation. This negative slope in Vr with
respect to z is clearly shown in case B by the values of radial
velocity obtained at the regular grid points at z*= 0.15, 0.175,
and 0.20 (fig. 10(a)). For case A, where V’r is nearly eq~l to zero

axound Z*= 0.15, this negative slope ii ap&.rent after the values
of Vr at z*= 0.1625 and 0.1875 me computed by using the three-

point differentiation formula and the values of $ at the regular grid
points.

.—

—

—
-.

.—

It maybe noted that this oscil.latoryvariation of velocities in
the space between the stator and the rotor is entirely due to the speci- ,
fied variation of Vur in that space. Because Vur is specified to
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be consta& in that space

are equal to zero in that

NAC!ATN 2750

(fig. 4), Fu @ F, on the stream surface

space according to equations (7) and (9).
These values are approached when the number of blades of the stator and
rotor approaches infinity. In the actual case of a stream surface
between two adjacent blades a finite distance apart, the streamlines
turn for a short distance both upstrem and downstream of the stator
and the rotor (see, for example, referenoe 7), and consequently)both
Fr and the velocities would vary smoothly in the space between the

statm and the rotor.

Contours of constant velocity. - A contour plot of constant-values
of absdlute velocity in the stator and relative velocity in the rotor
for case B is given-in figure
stator and entering the rotor
the rotor tip speed.

Compressible

11. The ~x~~ velocities leaving the
are, respectively, 1.77 and 1.25 times

Solution Neglecting Fr

A compressible solution for an inlet Mach number of10.308 is first
obtained by neglecting Fr in the priqcipal ecyzation(case C). This .

solution is found in order to see the effect of the compressibility
term in equation (5) alone and to see the error involved in neglecting
FI---

due

(

ap
z
the

for c&pressitile flow,. No.nunifo?nnloading is used.

The deviation of flow in this solution from cylindrical flow is
to the density term in N, which is mainly determined by the product
~

)ar ●

This generally positive value of N inside the stator and

rotor reqtires a general decrease in ~ at any point inside the
stator and the rotor from its inlet value at the same radius, thereby
resulting in a streamline shape as shown in fi~e 12.

In this solution, the starting values for the relaxation solution
are obtained by using the values for the gas state at z*= 0.175
obtained in reference 2.and by assuming thatithe streamline shape varies
as a simplesine curve in the meridional plane. The solutions converged
quickly. The successive values of V*, a$*/~r*, a~*/~z*, P*, and N*
at r* = 0.8 obtained in the matrix and relaxatiorisolutions are given
in tables”IV andV. The change in ~* in the last cycle is less than
2 in the fifth sigrxificantfigure or.about.0,002 percent.

The variations of V$, V;, and p* at several radii obtained in

the final matrix solution are shown for case C in figures 13(a), 13(b),
and 14, respectively (the curves in those figures forcases D ~d E
will be discussed in-the following section). Because ofithe.decrease”-
in density across the turbine, the axial velocity rises to a higher
value downstream of the rotdr (fig. 13(b)).
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.

Compressible Solutions Including Fr -.

n Solutions are next obtained for compressible flow by considering
simultaneously the effects of compressibility and of Fr. As in case C,

nonuniform loading is used. Three axial positions of-the radial ele-
ment of the stream surface in the stator (z$ = 0.0625, C)jand 0.15 for

cases D, E, and F, respectively; see fig. 15) are considered in order
to investigate the possibility of minimizing the effect of radial flow

& by the choice of this position. (Conceivably, the stream surface withinN
the stator may have no radial element, its inclination with respect to
a radial line being arbitrarily chosen to produce a certain desired
effect.) Because of the very large value of Fr and the accompanying

large radial flow, the solution for case.F was stopped at an early
stage, and only the value of Fr obtained in the early relaxation solu-
tion and that obtained by the approxhnate formula (30) ue given. The
other two cases were carried further by the relaxation,method and
checked by two to three matrix cycles. -Althoughthe solutions are not
so far converged as those in cases A, B, and C, they are accurate enough
for ordinary purposes. The successive values of ~ and other pertinent
variables at a number of typical points for case D are given in
tables VT andVII in a manner similar to that for cases B and,C. .

.

.

.

Nonlinearity of compressible solut’ion.- In the calculation of
case D, the values of the later relaxation solutions of case C were used
as starting values. The results soon made clear, however, that quicker
convergence would have been obtained if the calculation had been started
from cylindrical flow. Because of the nonlinear nature of the principal
e@uation, the co~lete solution for co~ressible flow for case D cannot
be estimated from the solutions obtained in cases B and C. For the two
contributions in the nonhomogeneous term N, the first term due to com-
pressibility remains about the same”as ttit in case C, but the second
term, containing Fr and p, is greatly changed because of the change
in density. The distribution of the resultant values of N (and con-
sequently the ~-distribution) is therefore quite different from that
in case B or C or that obtained by directly coribiningthe N-values in
the

are
The

has

.— -..

. .
,.

.-r_-

. ..—

two cases; -—

Variation of F components. - The variations of Fur, Fz, and Fr ..

plottedas before in figures 16(a), 16(b), and 16(c), respectively.
variations of Fur snd Fz are similar to those in case B, which
the same type of loading.

,

A comparison of the Fr-distribution”in the stator for the three
—

values of z: chosen shows that alining the stream surface at the ...
stator exit (z: = 0.15) causes very large negative values of Fr in
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the stator, which will produce large amounts oflradial flow. For
~ = 0.0625, Fr is negative for the first portion and positive for the -a

second portion. For z~ = OS Fr is positive everywhere in the stator.-

The approximate formula (30) for Fr still cnmpared very well with the

final values. .

Shape of streamline. - The meridional projection of the streenlines
obtafned for cases D and E is shown in figure 17. In case D, the gas “:: ._~-
flows radially outward and then inward inthe stator, whereas in case E
the gas flows radially inward and then outw~d in the stator. T& -~ s.-.
streamline.in case D deviates from a cylindrical surface more than that

..-
N

in case E at the leading edge of the stator but less at the leading edge
-..

of the rotor.
—. . .._.—.-_

Variation of velocities and density. - The variations of Vr and

Vz in cases D andE at several radii are shown in figure 13. The radial

velocities in these cases are’of about the ssqe”order of magnitude as
the velocity in case C ‘buthave more complicated shapes (fig. 13(a)).
Figure 13(b) shows that there are significant differences between thq
values Vz of the.three cases C, D, and E, especially at the casing

and the hub. These differences are due almost entirely to the different
shapes in the streamlines because the diffe~nces in density among the
three cases are very small (fig. 14).

Contour plots of static pressure snd Mach number. - Because of the
low value of the hub-tip radius ratio, there is an over-all static-

-.

.-!

.-—

—
=
—

. . ._

---

.4 .:

pressure rise across the rotor for v&es of r* below 0.7 (fig. 18).
An even greater static-pressurerise accompfiiedby a sub-sequentreexpan-

?...:

sion.to the exit pressure occurs within the~rotor-blade-few; this
increase in pressure rise is a result of the flow-area incrqase associ- : ‘; ,=.—

ated with the assumption that B is equal tO 1.

The contours of constant Mach nmnber (absoluteMach number in
stator and relative Mch number in rotor) of cases D and E are shown in

— .—

figure 19. The maximum lkch numbers at the.stator exit are 0.982 and .....=

0.993 for cases D audE, respectively. ~ the effects of radial flow
;

are com@etely ignored (simplified ra~~ eqyilibrium)~ the maximum ‘“
Mach number d the stator exit is only 0.927~ ------m

Radial variation of axial velocity ahead of rotor. - In the -
simplified-radial-equilibriumcalculation, the axial velocity does not ..—_+

very radially for free-vortex-typeblading.” The present solutions .-
show, however, that there is considerable radial variation in axial

—“
*

velocity for both incompressibleand compressible flows.
.—._

An error in .. <..=
the axial velocity of thegas entering a bQde row produces g,r”ez%orh
Mach number and-angle of attack, and thereby the range of efficient. .,.-.- _rm=
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operation is reduced. The radial variation of axial.velocity ahead of
the rotor (at z*= 0.175) is plotted for cases A to E in figure 20 in
which the variation obtained in reference 2 is also plotted for com-
parison. = all cases except s@lified radial equilibrium, the axial
velocity decreases with an increase in radius, and the rate of decrease

.-

is greatest at the hub. The effect of moving the radial element of the
stream surface in the stator from the stator entrance (case E) to the
midaxial position in the stator (case D) was to decrease the radial.
gradient in axial velocity at the rotor entrance. The approximate solu-
tion of reference 2 is very close to the solution of case D.

-.

For incompressible flow, this variation is due to the shapes of
the streamlines (fig. 9), as ihf’luencedby the Fr-distributions

(fig. 8(c)), whereas for the compressible flow this variation is due ‘
mainly to the increasingly larger ti”opIn density across the stator
toward the hub.

SUMMARYOFRESULTS

A method recently developed for determining the steady flow of a
nonviscous compressible fluid along a relative stream surface between
adjacent blades in a turbomachine was a~plied to investigate the sub-
sonic through flow in’”asingle-stage axial-flow gas turbine. A free-
vortex type of variation in tangential velocity was prescribed along
the stream surface. Cylindrical bounding walls were’specified in order ..—-
to avoid radial flow at the walls. The flow variations on the stresm
surface for incompressible and compressible flows were obtaimed by using
the relaxation ‘hethodwith hand computation and the matrix method on
both an IBM Card Programned Electronic Calculator and a UNIVAC.

In &El solutions considered in the present investigation, conver-
gence was obtained without difficulty.

.-
A comparison between the relax-

ation and the matrix methods showed that more accurate results were
obtained with the matrix method in a shorter interval of time. The
results of these highly accurate through-flow calculations form a basis
for evaluation of simpler but less accurate methods.

.—

For incompressible flow, considerable radial flow was obtained
because of the circtierential pressure gradient of the gas and the
radial twist of the stream surface.

.
The gas flowed radially inward in

the stator and radially outward in the rotor. This radial flow resulted
in a large negative radial gradient of axial velocity in the space

.—

between the stator- md rotor-blade rows.
-r-

For compressible flow, the compressibility of the gas and the
radial twist of the stream surface had equd.ly important effects on
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the flow distribution and the nonlinear behavior of the principal eqya-
tion defining the flow was quite,evident. The shape, or twist, of the
stream ‘surfaceend thus the amount of radial flow were sensitive to the
axial location of the radial element of the stream surface in the stator.
The largest radial flow occurred when this radial element was located at
the exit of the sta.tor. The effect of-moving the radial element of the
stream surface in the stator from the stator entrance to the mid@xial
position in the statcm was to increase the deviation from cylindrical
flow ahead oflthe .statorand to reduce the deviation ahead of-the rdorj

the radial gradient in axial velocity at the rotor entrance was
decreased. When the radial element of the stream surface in the rotor
was near the midsxial position in the rotor, a large negative gradient
of axial velocity was observed in all cases-ahead of the
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TABLE I - REIAXAKEON COEFFICIENTS

NACA TN 2750

F For 0.00001 change of ~ at grid point (ri,zi),
q change residus3 at (rjz) by

r z
q

Zi
- 28Z Zi - 5Z Zi Zi + 6Z Zi + 28Z

0.95 0.95 -0.00133 0.02133 -0.04684 0.02133 -0.00133
.90 .00519
.85 -s00031

0.95 0.00232
3.90 .90 -0.00133 0.02133 -.05000 0.02133 -0.00133

.85 .00518

.80 -.00031

0.95 0.001.23
.90 .00548

).85 .85 -0.00133 0.02133 -.05000 0.02133 -0,00133
.80 .00517
.75 -.00031

0.95 -0.00032
.90 -.00035
.85 ●00549

).80 .80 -0.00133 0.02135 -.06000 0.02133 -0.00133
,75 .00516
.70 -.00031
.65 -.00036

0.85 -0.00035
.80 .00550

1.75 ,75 -o.oo133 0.02133 -.05000 0.02133 -0.00133
,70 .00514
.65 .00149

0.80 -0.00035
.75 .00551

1.70 ● 70 -0.00133 0.02133 -.05000 0.02!133 -0.00133
.65 .oo154

0.75 -0.0”0036
,70 .00552

1.65 .65 -0.00133 0.02133 -.04641 0.02133 -0.00133

.
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TABLE II - SUCCESSIW!!VALUES OF ~ IN MATRIX SOLUTIONSAT
~* = 0.8 FOR CASEB

*
z starting Matrix solutions

value
First Second -a Fourth

CPFIC UNIVAC

0.500 0.08648 0-.086479 0.086478 0.086478 0.086478 0.086478
-.400 .08648 .086475 .086468 .086468 .086468 .086468
-.300 .08648 .086468 :086450 .086450 .08644.9 .086449
-.200 .08646 .086448 .086415 .08641-5 .086413 .086412
-.100 .08639 .086395 .086354 .086354 .086350 .086349
-,050 .08636 .086371 .086330 .086330 .086324 .086322
-.025 .08638 .086382 .086333 .086333 .086327 .086325
0 .08647 .086437 .086381 .086381 .086374 .086372
.025 .08695 .086879 .086811 c086811 .086805 .086803
.050 .08775 .087673 .087591 .087591 .087587 .087585
.075 .08882 .088650 .088550 .088550 .088550 .088547
,100 .08976 .089536 .089415 .089415 .089419 .089416
.125 .09042 ● 090145 .089996 .089996 *090005 .090CQ2
.150 “ .09086 .090522 .090338 .090338 .090352 ,090351
.175 .09139 .090972 .090746 .090746 .090769 .090769
.200 .09187 .091458 .091187 .’091187 .091220 .0912t21
.225 .09152 .091119 .090809 .090810 .090834 .090835
.250 .09073 .090336 .089989 .089989 .09!3004 .090007
.275 .08982 .089464 .089109 .089107 .089106 .089108
.300 .08908 .088756 0088414 .088414 .088398 .088400
.325 .08858 .088284 .087960 .087960 .087942 .087944
.350 .08824 .087981 .087677 .087677 .087666 .087668
,375 .08794 .087728 .087454 .087454 ● 087449 .087450
.400 .08765 .087515 .087273 .087273 .087272 .087273
,450 .08723 .087185 .087008 .087008 . .087010 .087011
.550 .08676 .086800 .086716 .086716 .086718 .086718
.650 .08656 .086622 .086584 .086584 .086585 .086585
,750 .08649 .086537 .086522 .086522 .086522 .086522
.850 .08648 .086489 .086486 .086486 .086486 .086486

— ——— -



).10

).25

CN
N

E!olution

Relazatlon

Matrix

Relaxation

Matrti

3. I-O

.lo

.05

.05

.05

.05

.05

3.113

.lo

.05

.05

.05

.05

.05

AT r* = 0.8 F~”C~-B

I

T
0.025 0.06987

.025 .08882

.025 .08876

( .08975)

.025 .0885364

.025 .0894151

.025 .0894U38

.025 .0894185

1
3.025 0.091.22

.025 .09098

.025 .09073

.025 ( .08064)

.0903360

.025 .0899a93

.025 .0900044

.025 .09c0065

xar
0.49248

.49101

.49217

.49377

.49266

.49270

.49269

0.48654

.49268

.49282

.49648

.49191

.49235

.48243

$“

0.03500

.03563

.03238

.03050

.02940

.02959

.02959

0.03647

-.03647

-.03603

-.03527

-.03599

-.03667

-.03665

Ffir*

3.6851

3.6741

3.6828

3.6948

3.6865

3.6867

-5.4610

-5.5230

-5.5327

-5.5726

-5.5213

-5.5263

F;

-7.2194

-7.2313

-7.2353

-7.2374

-7.2386

-7.2380

-1.4682

-1.4432

-1.4453

-1.4367

-1.4371

-1.4376

0.49755

.5043a

.51E54

.5153-4

.51757

.51.589

Q.19868

-.20870

-.20328

-.20638
-.20682

-.20674

7N*

7
0.58395

.59364

.60051

.60325

.60723

.60521

1
3.23604

.24484

.23837

.24837

.24302

.24271

1

ahproved value by relaxation methcd - dtiectly cmqxrable to n% value obtained by matrix w
method . ~

El
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TABLE Iv- SUCCESSIVE VALUES OF V IN MATKIX
SOLUTIONS AT r* = 0.8 FOR CASE C

Z*

-0.500
-.400
-.300
-.200
-.100
-.050
-.025
0
.025
.050
● 075
.100
.125
● 150
.175
.200
.225
.250
.275
.300
.325
●350
.375
.400
.450
.550
.650
.750
.850

starting
value

0.08642

.08642

.08642

.08627
● 08600
.08577
.08562
.08543
.08520
.08493
.08467
.08438
● 08417
.08414
.08417
:08429
.08454
.08486
.08515
.08541
.08562
.08578
.08591
.08602
.08618
.,08628
.08644
.08648
.08648

First

0.086475
.086451
.086399
.086285
.086024
.085789
.085631
.085440
.085211
.084949
.084679
.084459
.084268
.084190
.084218
.084352
.084594
.084884
.085172
.085424
.085630
.085796
.085930
● 086040
.086199
.086370
.086437
.086463
.086477

Matrix solutions

Second

CPEC

).086474
.086447
.086396
.086282
.086023
.085789
.085632
.085440
.085210
.084947
.084676
.084433
.084258
.084179
.084207
.084342
.084585
.084877
.085166
.085419
.085626
.085793
.085928
.086037
.086195
.086363
.086432
.086462
.086477

UNIVAC

0.066474
.086447
.086396
.086283
.086023
.085789
.085632
.085441
.085210
.084947
.084676
●084433
.084258
.084180
.084207
.084342
.084585
.084877
.085166
.085419
.085627
.085793
.085928
.086037
.086195
.086363
.086432
.086462
.086477

Third

0.086474
.086448
.086396
.086283
.086023
.085788
.085631
.085439
.085210
.084948
.084676
.084434
.084259
.084181
.084208
.084343
.084586
.084878
.085167
.085420
.085627
.085794
.085928
.086037
.086195
.086363
.086433
.086463
.086477

v

—

.-
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*
r =s0.8 FOR CAS2 C

Solution

Relaxation

Matrti

Relaxation

Matrix

0.05

.05

.05

.05

.05

3.05

.05

.05

.05

.05

8;

0.025

.025

.025

..025

.025

3.025

.025

.025

.025

.025

0.08442

.0s43s

.084393

.0s44328

.084+%35

3.084s6

.084S6

.0s4ss45

.0s4s-769

.0S4S786

0.49085

.49592

.49552

.49602

.49582

0.490s7

.49638

.49512

.49535

.49528

f

g

2
m
o

I

I

a /4.,,,,, \“ .
I i,, .b, ,11 ‘I 1,1: Y 1, ,Iil.il I,zm. , ;

-0.01037

-.o1o70

-.00S40

-.00S58

-.00S56

0.01.253

.o1253

.o1190

.01J91

.OI.190

P
*

I?*

0.82013 o..l.994a

.81871 .20101

.818s4 .19747

.81870 ; .18748

.81.876

0.78938 0.066s4

.78771 .06538

.78810 .06522

.78802 .06523

.78S04 .06550
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TABLE!VI - SUCCESSIVE V.UES OF v IN MATR?X
SOLUTIONS AT r* = 0.8 FOR CASE D

,0.500
-.400
-.300
-.200
-,100
-.050
-.025
0
.025
.050
.075
.100
.125
.150
.175
.200
.225
.250
.275
● 300
.325
.350
.375
.400
.450
●550
.650
.750
.850

Starting
value

0.08648
.08642
.08628
.08597
.08539
.08497
.08474
.08452
.08466
.08511
.08568
.08614
.08641
.08660
.08694
.08741
.08744
.08720
.08691
.08671
.08662
.08659
.08656
.08653
.08650
.08647
.08648
.08648
.08648

Matrix solutions

First

CFIEC

0.086470
.086422
.086330
.086123
.085657
.085264
.085020
.084773
.084860
.085238
.085730
.086114
.086312
.086433
.086713
.087137
.0871.24
.086859
.086558
.086361
.086313
.086331
.086352
.086373
.086406
.086447
.086465
.086474
.086479

UNIVAC

0.086470
.086422
.086330
.0861i23
.085657
.085264
.085021
.084773
.084861
.085239
.085731
.086114
.086312
.086433
.086713
.087137
.087124
.086859
.086558
.086361
.086313
.086331
.086353
.086373
.086406
.086447
.086465
.086474
.086479

Second

0.086470
.086419
.086324
.086114
.085653
.085265
‘.085026
.084782
.084872
.085254
.085753
.086148
.086358
.086492
.086785
.087219
.087220
.086971
.086682
.086498
.086432
.086433
.086440
.086448
.086461
.086474
.086479
.086480
.086480

Third

0.086470
.086420
.086324
.086114
.085651
.085262
.085023
.084778
●084868
.085249
.085747
.086140
.086350
.086483
.086775
.087207
.087206
.086953
.086661
.086474
.086407
.086409
.086417
.086426
.086443
.086464
.086473
.086477
.086479

.——-=
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0.10

0.25

Solution

Relaxation

Matrix

Relaxation

Matrix

8:

0.10
.10
.05

.05

.05

.05

.05

0.1o
●I.O

.05

.05

.05

.05

.05

0.025

.025

.025

.025

.025

.025

.025

0.025

.025

.025

.025

.025

.025

.025

r* = 0.8 FOR CASE D

w

0.08616

.08609

.08615

.00614

‘(.08614)

.086114

.086148

.086140

0.08737

.08726

.08720

.08720

3(.os718)

.086859

.0S6971

.086953

,$

0.49474

.49661

.49675

.49612

.49530

.4S567

.49564

0.48501

.49521

.49493

.49573

.49450

.49483

.494s8

0.00888
.o1593

.01393

.01450

.o11534

.01Z020

.OU.S69

0.00562

-.01177

-. Olmo

- .Ollso

-.012527

-.o11951

-.012092

0.81905

.81S47

.81S45

.81B63

.81.889

.81878

.81.879

0. 7s811i

. 7s807

. 78&L5

.78791

.78827

.78818

.78816

l?;

0.52876

.54071

.541s3

.53724

.54006

.53s05

0.20438

.20388

.20419

.20740

.20320

.20331

. . ..-. ,-

T
N*

-0.28438

-.3r213

-.30862

-.304s4

-.30277

-.30187

-0.06956

-.06909

-.06843

-.06732

-.06944

-.06983

ajlqproved value by relaxation method and directly coqm%ble to next value obtained by

matrix method.

,41’, ,,, ’11
.,,1,:1 J; ,

1,
11. hl IiIll!ll ,, 1,1, !ll ill. illzwzu, . ‘
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Figure 1. Relative stream surface about midway between adjacentblades.
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FYgure 2. - 14ridional section of gas turbine,
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a(v&*)

az*

.

Figure3. - Specifledvsriationof tangentialvelocity V&

withrespectto sxialdistance z*. -

39

—

.—

—



—

l!-
0

meridiontd pleneReference

+ +.* + +-
/

/ OJ05

+’J+ * + i-_L

-1
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Figure 5. - Matrix [C]expre6sed in terms ofsu~matrices [E], [F], and [G~.

.-

— .

.;

., +,.
. . ... .

-..

—.

.

.



—. .-

—

o

0

0

I
6 0

11.-—
3s2 0.9S2a

30.92kk

2

&-0.8X3a

1 1
-~2+o .75~a

o

o’

(.) ZUWLWX [E].

o

0

1 1.—

‘3 0.85X12a

2

&ox

305
-l~-mT

42—-—
?& o.7x3e

1

*’O.W*

1
0 0

0 0

0 0

1 1
-— n

‘UiZ2O.2X12a

2 1 1

30.75W -1X2-O= I

505 2

-M~2-a7 30.7x3a I
15 5:55

s-o=
—-

1
‘37+0 .65X6a %-

.,

I1, ~



NACA TN 2750

.

.
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.

.

0

0

0

0

0

0

o

0

0

0,

0

0

I-6
o 0 0, 0 o—

~2.b2

(b) Submatrix[F].

\

1.— 0 0 0 0 0 0
~2

0
1 0 0 0 0-~ 0

0 0 1-— 0 0 0 0
12b2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0
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(c) Submatrix[G].

Figure 6. - Concluded. SubmatricesI,E],[F], and [G] expressedin terms of grid
spacings E: and 6;. a = 6~; b = 6:.
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:2670 132 70 -18 O“ O O–

280 -2700 296 -19 0 o .0

-i6

o

0

0

-0

i216 o 0 ‘“o

O 1152 0 O“

o 0 1088 0

00 0 1024

0000

0000

0000

264 -2550 280 -18 0. 0

-15 248 -2400 264 -17 0

0 -14 232 -2250 248 -16

0 0 -13 216 -2100 232

0 0 -14 58 60 -1810—

(a) Submatrfi ~E~.

00

0 0

00

00

960 0

0 896

0 P

(b) Submatrix [F].

Figure 7. - Su&natrices [E],

o–

0

0

0

0

0
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NACA TN 2750
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0 -720000,0
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00000-560
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(c) Submatrix [G].
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[F], and [G] after row multiplication. ‘“

.



.. ..L .

NACA TN 27S0

.

.

N
o
g

.

.

.

●

Z*

(a)F&*.

Figure 8. - Vaiation of F h Inccmq?ressiblesolutirme.
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(b)F:.

Figure 8. - Continued.Variationa? F inincompressiblesolutions.
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(c) F;.

Figure 8. - concluded. veriatlon of

.

.

47

.-

F in iacaqpressiblesolutione.

—



1

r*



7s

.

NACATN 2750

.

49

—

—

.,

. -

—
.-

-. _

z*

(a) Radial velocity V:.

Figure 10. - Variaticmofvelocitiesinticcnnpressiblesoluticxm.
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(b) Axial velmity V;

Figure 10 - Oomluded Variation of velocities in lnompremible solutions
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(a) Radial velocity V;.

FigureM. - Variationof’velool.tiesincompressiblesolutlcm.
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(b) hial velocity ~.

Figure13.- Concluded. variation of velocities in compressible solutions.
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Figure 14. - Variationof densityin compressiblesoluticms.
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Case

h (z5 = 0.0625 in stator)
–-—– ~ (z$= O In stator) I

—

--.

.

.
.

Z*

(a) F~r* for cases D and E.

Figure 16. - Variation of F in compressiblesolutions.



58 MCA TN 2750

.

10

0

-lo

Z*

(b)F; km cases D andE.

Figure16.- Continued. vmi8ti0n Of F incaw-ible, eoluti~s.
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Approximate
Solution formula (30) Case
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Figure16. - Concluded..VariatIonof F in compressiblesolutions.
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(a) Case D.

Figure 18. - Ccutoum of constant pressure ratio p/pT,i. —
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(b) Case E.

Figure18.- Concluded.Conta.meofconetent-pressure ratio P/PT,i.
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(a)CaseD.

Figure19. - Contcws of conetant Mach number.
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(b) Case E.

Figure 19. - Concluded. Centours o~..oonatent Maoh number.
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Figure20. - Radialveriationof axialvelocityat Z* equal to
0,175.
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